
Autonomously Generating Hints by Inferring Problem
Solving Policies

Chris Piech
Stanford University

piech@cs.stanford.edu

Mehran Sahami
Stanford University

sahami@cs.stanford.edu
Jonathan Huang

Stanford University, Google
jonathanhuang@google.com

Leonidas Guibas
Stanford University

guibas@cs.stanford.edu

ABSTRACT
Exploring the whole sequence of steps a student takes to pro-
duce work, and the patterns that emerge from thousands of
such sequences is fertile ground for a richer understanding
of learning. In this paper we autonomously generate hints
for the Code.org ‘Hour of Code,’ (which is to the best of our
knowledge the largest online course to date) using historical
student data. We first develop a family of algorithms that can
predict the way an expert teacher would encourage a student
to make forward progress. Such predictions can form the ba-
sis for effective hint generation systems. The algorithms are
more accurate than current state-of-the-art methods at recreat-
ing expert suggestions, are easy to implement and scale well.
We then show that the same framework which motivated the
hint generating algorithms suggests a sequence-based statis-
tic that can be measured for each learner. We discover that
this statistic is highly predictive of a student’s future success.

Author Keywords
Problem solving policy; Hint generation; Educational data
mining.

ACM Classification Keywords
K.3.1 Computer Uses in Education

INTRODUCTION
In massive online courses that have thousands and sometimes
millions of students it is often unfeasible to provide feedback
on assignments of any complexity [10]. As a result simple
multiple choice questions, not open ended assessments, are
the staple of online learning. The inability to provide feed-
back even applies to richly-structured assignments (such as
math proofs or computer programs) where students create re-
sponses in a highly expressive, formalized grammar. Beau-
tiful assessments can inspire students and add artistry to a
course. This gulf between what is currently possible and what
we think would improve open access learning suggests a re-
search challenge: imagine and evaluate ways to give feedback

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.

L@S 2015, March 14–18, 2015, Vancouver, BC, Canada.
ACM 978-1-4503-3411-2/15/03.
http://dx.doi.org/10.1145/2724660.2724668

to richly-structured assessments at scale. We believe that data
of how previous students navigated their way to a final answer
can be leveraged to autonomously understand the landscape
of such assessments and enable hints for future students.

A motivating case study is the set of assessments in the
Code.org Hour of Code course. Code.org is a non-profit or-
ganization that led a coordinated effort to have every K-12
student in the United States complete an hour worth of com-
puter science. As part of the initiative Code.org hosted an
Hour of Code curriculum: a series of twenty introductory
programming “challenges” with instructional videos. In the
year and a half since they launched, over 27 million learners
have tried their curriculum and it has been taught in over 90
thousand classrooms making it, to the best of our knowledge,
the largest MOOC to date. In the challenges students gener-
ate programs by putting together blocks of code. The open
ended nature of coding, and the many avenues that students
can take to get to the solution both make the challenges ap-
pealing learning activities, and prevent Code.org from being
able to provide expert feedback to stuck students.

The Hour of Code challenges take several steps for a student
to solve. At each point in time, the student’s current work
constitutes a partial solution ψ ∈ S where S is the set of all
possible responses. As the student works on the assessment
they will transition through a series T = {ψ0, ψ1, ..., ψn} of
partial solutions from step 0, when they have done no work,
to step n when they have either reached the solution or given
up. We propose that generating feedback autonomously for
an assessment of this nature can be seen as the composition
of two tasks:

1. Deciding for any learner what partial solution an educa-
tional expert would suggest they transition to next.

2. Choosing how to communicate that information to the stu-
dent such that they improve on a learning objective.

We suggest that both of the decoupled tasks can be solved
and tested independently. The objective of this paper is to
solve the former problem by learning what we call a Problem
Solving Policy (PSP): a decision for any partial solution as to
what next partial solution a student should take (see definition
1 and the example in figure 1). Using historical data we gen-
erate PSPs for challenges in the Hour of Code and evaluate to
what extent they capture expert opinion.

L@S 2015 • Design March 14–18, 2015, Vancouver, BC, Canada

195



Figure 1: A visualization of a problem solving policy gener-
ated for an early Hour of Code challenge (PA). Each node
is a unique partial solution, node 0 is the correct answer.
The edges show what next partial solution we think an expert
would suggest students move towards.

DEFINITION 1. Problem Solving Policy (PSP).

Let S be the set of partial solutions. A problem solving
policy π : S → S specifies a partial-solution s′ = π(s)
for all s ∈ S.

Note that the definition for a PSP makes the Markov assump-
tion as no partial solution other than a student’s current state
is considered in the policy mapping.

A PSP provides a foundation for generating formative feed-
back. For a given partial solution, there are many types of
issues a student could have: they may have missed a step,
made a mistake, have compounded mistakes, or possibly they
are on the right path and simply need to keep going. An ideal
PSP captures these diverse needs. It selects the single part of
the partial solution the student should work on first and de-
notes how they should do so. Importantly, the PSP can also
be evaluated independently from the actual feedback given
to students (e.g. via a hint generation) given a ground truth
dataset composed of expert evaluations on how they would
push a student forward.

Our hypothesis is that for large classes like Code.org there
are patterns which materialize in how the many previous stu-
dents have navigated from an empty project to the final an-
swer which can be leveraged to learn how students should
move forward from any ψ ∈ S. For example, if ten thou-
sand students had at some point all submitted the exact same
partial solution with the same set of mistakes, it seems rea-
sonable that the best way forward is illuminated by the way
that crowd then went on to fix their programs. Surprisingly,
we found that many of the most obvious statistics that could
be calculated from historical data or static analysis were not
particularly useful.

The main contributions of this work are: (1) a family of al-
gorithms which can accurately predict how experts believe
learners should make forward progress from a partial solu-
tion (a PSP), based on historical data (2) a related per-student
statistic generated from how a student solves a challenge that
correlates strongly with future performance and (3) a unified
comparison of previously published algorithms. These results
speak to a deeper theme: how students solve assignments is
an under utilized, important lens into what students know and
what feedback future students will need.

Related Work
Giving automated hints for richly-structured assessments at
scale is a task with a long history of research that includes
fields as diverse as intelligent tutors, theorem provers, crowd
sourcing and peer grading.

This work expands upon research towards data-driven PSPs
by the Intelligent Tutor (IT) community. In particular a simi-
lar problem was posed in Rivers’ and Koedinger’s paper Au-
tomating Hint Generation with Solution Space Path Construc-
tion [15]. Rivers et al presented an algorithm which intro-
duces the heuristic that popular partial solutions tend to cor-
respond to good next steps. The Hint Factory by Barnes et al
uses a historically trained Markov Decision Problem (MDP)
formulation [3]. While both papers present algorithms, the
PSPs they generate were not directly measured for quality
and the algorithms have previously not been compared to one
another. There has been research from the field of static anal-
ysis which present alternative ways to generate PSPs. Singh
et al suggest ways to find shortest path edits to a solution for
programming problems, work which builds off a community
of static analysis and theorem prover research [18] [4]. One
contribution of this paper is to recreate the IT algorithms and
a static analysis algorithm so that we can evaluate them all on
the same dataset.

There are a range of ways to generate feedback for richly-
structured assessments at scale that do not involve first learn-
ing a PSP. One particularly interesting approach is to crowd
source feedback for students [21], an idea which can be ex-
tended to the programming domain [20]. While it would take
a substantial amount of work to give feedback to all answers
in rich assessments Nguyen et al suggests ways to identify
functionally equivalent programs which can share annota-
tions [9] [14]. An appealing idea is to have students reflect on
what mistakes they made after solving a problem, but this idea
does not apply to our setting where students are as young as
five years old. At what point is a student ready to consciously
reflect on the challenges that they faced? Peer grading is one
of the most common solutions for giving feedback to complex
assignments at scale in massive open online courses [8]; how-
ever, it can only be used to give feedback on a final submis-
sions, not hints to a stuck student. Moreover asking students
to peer grade programs would have a dramatic impact on the
experience of the Hour of Code if used for each challenge.

Cognitive tutors are a compelling approach towards hint gen-
eration [13] [2]. They are well rooted in educational theory
and have been shown to be pedagogically successful. How-
ever, the effort required to author a cognitive model, a neces-

L@S 2015 • Design March 14–18, 2015, Vancouver, BC, Canada

196



Figure 2: Schematic of the maze and example solution for PA
(left) and PB (right). The arrow is the agent and the heart is
the goal.

sary component, increases with the number of unique answers
a student can produce. For richly-structured assignments such
as the one in Code.org this approach does not scale well. Sim-
ilarly there is a literature of scientists trying to understand, via
observation, how student’s solve programming challenges.
The frameworks developed have engendered better teaching
techniques but not at-scale autonomous hints [5] [1].

The problem of generating a PSP can be seen as an instance of
more general problems. There is a clear parallel between gen-
erating a PSP and autonomous decision making [12]. Find-
ing a PSP could be expressed as a route planning task [19]
and historical data could be viewed as item responses where
students vote on ways to make forward progress [22].

One of the aims of this work is to enable further compar-
ative research. To this end we will share relevant code
and annonomized, aggregate data: http://stanford.edu/

˜cpiech/codedotorg.html

DATA
In the Hour of Code website, students write programs to solve
maze world puzzles. Each time a learner runs their program,
a symbolic representation of their current work is recorded.
When the learner submits a final answer, or stops working
on a challenge, the learners partial solutions are composed
into a raw series. There is a simple mechanism to test if two
symbolic representations are identical.

The dataset for this paper is the series of partial solutions from
all logged in students from December 2013 to March 2014.
In that time Code.org gathered over 137 million partial solu-
tions. Retention was quite high relative to other contemporary
open access courses, see figure 3(a). Volunteered information
from 19.5% of the logged in users gives us a window into the
demographic makeup of the learners: 59% are male and 41%
are female. The average age is µ = 13.2, σ = 4.3 years old
with the age range spanning from 5 to 98 years old.

In this analysis we focus on two problems PA and PB which
are representative of different levels of complexity. See figure
2 for a schematic of the problems, and the solution code. The
solution to PA , which was the fourth challenge in the twenty
challenge curriculum, requires students to string together a
series of moves and turns. The solution to PB , which was the
eighteenth challenge, requires an if/else condition inside a for
loop: the most advanced concept in the hour of code.

Surprisingly, while the challenges only required a few lines
of code, the number of unique partial solutions submitted by

Statistic PA PB

Students Studied 509,405 263,569
Submissions 1,138,506 1,263,360
Unique Submissions 10,293 79,553
Pass Rate 97.8% 81.0%

Table 1: Summary of the dataset analyzed.

the logged in users was in the tens of thousands (See table 1).
We define unique submissions to be ones with unique abstract
syntax trees. For PB , even if we only look at programs with
ten lines of fewer, there are around 10 million hypothetical
unique partial solutions. It is partially for this reason that it is
so difficult to crowd source hints. However, the occurrence of
partial solutions is not evenly distributed and notable impact
could be had by annotating the most popular partial solutions.
Figure 3(b) shows the percent of submissions that would be
covered by generating hints for the most popular partial sub-
missions. In order to cover 90% of submissions for PB one
would need to annotate 7,127 unique programs. Code.org
crowd sources hints but to this date has only solicited tens
of annotations per challenge.

In the raw series of data, a student could make incremental
changes between runs or make large changes between runs.
To normalize out this difference we interpolated each stu-
dent’s series so that transitions between partial solutions con-
stituted exactly one program edit (as allowed by the website
interface). To interpolate we first made a “legal move graph”
of all the ways that users can move between partial solutions
using single edits. The legal move graphs for PA and PB have
average out-degrees of 8.5 and 4.3 respectively. Then for
every sequence of states (a, b) in the raw series that is not
in the legal move graph, we replaced the sequence with the
most likely path that a student would have taken along the
legal move graph to get from a to b. Transition probabilities
were calculated through the observed transitions along the le-
gal move graph with a baysian prior. We made a Markovian
assumption that the probability of each transition was inde-
pendent of previous transitions taken. Interpolation results in
a new series T = {ψ0, ψ1, ..., ψn}. We define a student to
have been “successful” if ψn was the challenge solution.

To evaluate policies, we gathered expert gold standard data
for both challenges. A group of seven computer science ed-
ucators each labelled hundreds of student programs (225 for
PA and 268 for PB) with the partial solution they suggest a
student who ran that program should transition to next. Inter
rater reliability showed a notable degree of agreement. The
Fleiss Kappa score [6] was 0.58. All conflicting codings were
discussed and multiple correct ways forward were allowed
when there was disagreement.

METHODS
The main objective of our research is to find the best algo-
rithm for generating a PSP. We tested three classes of solu-
tions: Desirable Path algorithms, previously proposed algo-

L@S 2015 • Design March 14–18, 2015, Vancouver, BC, Canada

197

http://stanford.edu/~cpiech/codedotorg.html
http://stanford.edu/~cpiech/codedotorg.html


(a) (b) (c)

Figure 3: (a) Percent of students who finished the first problem in the hour of code that solve the remaining ones. (b) The percent of submissions that are covered by annotating the
most popular partial solutions. (c) How does node popularity relate to number of students who agree with experts?

rithms and vanilla baseline algorithms. The general intuition
is that though individuals navigate partial solutions in mis-
leading ways, wisdom emerges from the cohort of students.

Desirable Path Algorithms
Historical data of students shows many interesting patterns.
But turning that data into a prediction of how experts would
suggest a learner make forward progress is a complicated
task. Students are learning. Many students are working
through systematic misunderstandings and this process is re-
flected in their navigation through partial solutions.

Moreover, partial solutions that are further off the most com-
mon path-to-solution, are visited by students that are less
likely to act like experts. See figure 3(c). This is an espe-
cially salient confound as these are precisely the partial so-
lutions where feedback to a student would be most neces-
sary. One way to think about this problem is that uncommon
partial solutions usually reflect mistakes on the part of a stu-
dent. Knowing that a student has made a mistake, one can
suppose that they are less likely than the average student to
make future transitions which agree with expert suggestions.
For example: in PA a common incorrect partial solutions is
a program that makes the agent move twice (and thus crash
into the wall) before turning left. The population of students
who have submitted a program that crashes into a wall al-
ready have misconceptions as to the dynamics of the chal-
lenge. Though the expert recommended way to make forward
progress is to remove one of the move statements, by far the
most common next transition that those students make is to
change their turn left to a turn right, which takes them even
further from the solution.

If we base our policy off of the transitions of students, we
will often be trusting a group of learners that we know have
already made a mistake. This biased sample limits our abil-
ity to understand the path-to-solution that would have been
the most popular if partial solutions were all visited by ideal
students. This raises a question: how can we know anything
about a given partial solution that isn’t collected solely from
the students that submit said partial solution?

One answer to that question is that we know the relative pop-
ularity of a partial solution based on how often it was sub-
mitted. Unlike transition counts, which sample from a biased
population, the number of times a partial solution is seen in
our dataset, “partial solution counts,” reflect a property of that
partial solution for the average student in the dataset. A rela-
tively high popularity suggests that the average student in the
sample found the partial solution to be a useful way-point on
a path-to-solution. A relatively low popularity suggests that
the average student did not. By creating algorithms based off
of this statistic we can avoid the confound that arises from the
uneven distribution of ability across partial solutions.

Even if we make the assumption that partial solution counts
reflect a global desirability of that partial solution how can we
turn that intuition into a PSP? The solution is not as easy as:
for any partial solution, chose the legal move such that the
next partial solution has a high count. That strategy, more
often than not, would encourage the student to delete any
progress they have made. The most popular partial solution
is the empty program and partial solutions which are further
from the empty program tend to be less popular. Instead, to
generate a PSP we must seek a balance between visiting de-
sirable partial solution and making forward progress. We be-
lieve that teachers strike this balance by considering the entire
path that they would expect a student to go down. Algorith-
mically this can be interpreted as searching for an optimally
desirable path-to-solution. Once a path-to-solution is decided
upon, the PSP function is simply the first step in that path.

We propose a desirable path theory which assumes that (a) de-
sirability of a partial solution to the average student is a func-
tion of historical counts and (b) experts suggest that learners
make progress along the most desirable path-to-solution. We
present two algorithms that derive from this theory.

Poisson Path
The first algorithm that we propose based on the desirable
path theory is the Poisson Path.

We define the Poisson Path from a partial solution s to be the
path from s to a perfect solution with the smallest expected
time to be generated by the average successful student. We

L@S 2015 • Design March 14–18, 2015, Vancouver, BC, Canada

198



assume that the amount of time required for an average stu-
dent to generate a partial solution is a Poisson process whose
rate parameter can be estimated via the partial solution count
from the student’s population. This assumption is founded
in the belief that the prototypical student prefers partial solu-
tions that are easy to generate.

Given these assumptions the Poisson Path γ(s) is:

γ(s) = argmin
p∈Z(s)

∑
x∈p

1

λx

Where Z(s) are all the paths-to-solution from s and λx is
the number of times partial solution x is seen in successful
student data. To generate a PSP we set π(s) to be the first
partial solution in the path γ(s).

DEFINITION 2. Poisson Path.

LetG be a graph traversed by agents. Assume for a node
x ∈ G, the time required for an agent to visit that node
varies as an exponential(λx) where λx is a Poisson
rate parameter.

The expected time until an agent visits a given node x is
1
λx

and the expected time until an agent generates each
node in a path p is

∑
x∈p

1
λx

The Poisson Path is the path from a node s to a terminal
with the smallest expected time required to be generated
by an agent. Of all the pathsZ(s) from s to the terminal,
the path with the smallest expected time is

γ(s) = argmin
p∈Z(s)

∑
x∈p

1

λx

Computing the Poisson Path can be solved using a simple re-
duction to Dijkstra’s shortest path algorithm. We construct a
graph where for all legal transitions a → b we add an edge
with cost 1

λb
. A Dijkstra search for the shortest path to any

solution over this graph will return the Poisson Path. Dijk-
stra’s algorithm is easy to implement and runs in O(n log n)
time for a graph with n partial solutions. To prevent repeat
submissions from having an undue influence on our partial
solution counts we remove all cycles from student series be-
fore we count occurrences.

Independent Probable Path
A second algorithm that we propose based on the desirable
path theory, is the Independent Probable Path.

This algorithm tries to find the path-to-solution from a given
partial solution that would have been the most probable for
an average successful student who we would hypothetically
start at that partial solution. For the average student we do
not know partial solution transition probabilities. We in-
stead know that the probability of the average student sub-
mitting a partial solution is proportional to the partial solution
count. Using these submission probabilities we can calculate
the markov-zero most likely path-to-solution for a randomly

sampled student in the class. The Independent Probable Path
γ(s), is calculated as:

γ(s) = argmax
p∈Z(s)

∏
x∈p

p(ψt = x)

= argmax
p∈Z(s)

∑
x∈p

log(
λx
k
)

= argmin
p∈Z(s)

∑
x∈p
− log(

λx
k
)

WhereZ(s) are all paths in the legal move graph from s to the
solution, λx is the count of successful students who submitted
x and k is the total number of submissions. This algorithm
can also be reduced to an instance of Dijkstra’s shortest path.

Baseline Algorithms
Several algorithms for generating PSPs have been proposed
in recent publications. Here we provide a brief overview of
the algorithms and any modifications that were made to better
fit the algorithms to the Code.org context. We also explore a
series of simpler, direct measures.

Markov Decision Problem
As proposed by Barnes and Stamper we can generate a PSP
by formulating student transitions as a Markov Decision
Problem (MDP) and learning an optimal policy. An MDP
is defined by specifying states, actions, rewards over states
and transition probabilities. In the Barnes et al formulation
the states are the set of partial solutions, actions are the legal
changes to a program allowed in the interface and the reward
of a partial solution is set to be 100 if it is a correct answer, 0
otherwise. Of note, the transition probability between partial
solutions a and b is defined as p(ψt+1 = b|ψt = a).

In a standard MDP the transition probability is the chance
of ending up in a state given one’s previous state and an ac-
tion the policy decided to perform. Applied to this setting we
would need to know the probability of a student going from
one partial solution to another if we were to suggest a par-
ticular next state. In the historical data available to Barnes
et al and in the Code.org context that conditional probabil-
ity is unknown; we can’t observe how our suggestions would
effect student transitions. Instead, as in Barnes et al, we as-
sume that a student’s transition probability is independent of
the partial solution we chose for them. The MDP has a single
hyper-parameter, the discount factor. We use standard value
iteration [17] inference on the MDP which results in a PSP.

Rivers Policy
In a paper recently published Rivers et al provided an algo-
rithm for choosing the ideal next step [15]. For a given par-
tial solution, the algorithm computes a score for all potential
next partial solutions and selects the argmax. The score is a
weighted sum of features. We adapted their score to utilize
the legal move graph which results in the following policy
function:

π(x) = argmax
n∈N(x)

θ0λn + θ1(1− δ(n, g)) + θ2v(n)

L@S 2015 • Design March 14–18, 2015, Vancouver, BC, Canada

199



Where N(x) are the neighbors of x in the legal move graph,
λn is the popularity of the partial solution, δ(n, g) is the min-
imum Abstract Syntax Tree edit distance between a neighbor
n and a correct answer g and v(n) is the unit-test score of the
neighbor. Though specific settings for parameters θ are pro-
vided in the paper, after trying the values given we considered
the weights to be hyper-parameters.

Static Analysis
Given the simple nature of the hour of code problems, es-
pecially PA , we hypothesized that the optimal PSP could
be chosen by a static analysis solution. For PA there was a
single optimal sequence of commands that solved the maze.
Given any partial solution, we believed that the expert labels
could be perfectly predicted by a sequence alignment algo-
rithm which compares the sequences of actions in the partial
solution to the answer and selects the first divergence. We did
our best to statically recreate human labels for PA . The al-
gorithm allowed for reductions of equivalent blocks of code
and had different insert and delete costs depending on rela-
tive position in the sequence. This algorithm was originally
developed to generate gold standard data.

Most Likely Next
For each partial solution x, select the partial solution that
most successful students transitioned to from x. This is equiv-
alent to choosing the next state that has maximal probability
π(x) = argmaxn p(ψt+1 = n|ψt = x).

Most Common Path
Find the the most common entire path to a solution in the
dataset and set π(x) to be the first partial solution in the path
from x to the correct answer.

Expected Success
For each partial solution x, select the legal next partial solu-
tion y that maximizes the probability of a student arriving at
the final answer given that they transition from x to y.

Min Time
Since all of our data was timestamped, for a given partial
solution x we can compute the expected time J(x) between
when a student submits x and when they submit the correct
solution. We chose π(x) = argminn∈N(x) J(n) to be the le-
gal next partial solution that has minimal expected time until
the student arrives at the solution.

Ability Model
We modified the inference algorithm for an item response
model with unknown correct answers presented by Whitehill
et al to learn a problem solving policy [22]. Let tj be the true
next step for partial solution j. Let αi be the ability of student
i and let βj be the difficulty of choosing right answer for par-
tial solution j. Let lij be the next step taken by student i from
state j. We model the probability of student i being correct
on item j to be:

p(lij = tj |αi, βj) =
1

1 + eαiβj

We chose values for α, β and t that best fit the data using
expectation maximization. The policy was set as π(x) = tx.

Evaluation
All ten of the algorithms listed–the Desirable Path algorithms,
the previously proposed algorithms and the vanilla baseline
algorithms–were run and the PSPs that they generated were
tested against the gold standard data that we had collected.

For both PA and PB we use the gold standard data collected
to generate an expert map t : T → S where T ⊂ S is the
set of partial solutions annotated by experts. For each partial
solution k ∈ T , t(k) is the set of partial solutions that experts
say a student should ideally transition to from k.

To evaluate a PSP π we calculate the percent of overlap be-
tween the policy and the expert map, weighted by number of
students who submitted partial solutions. Let λk be the num-
ber of students that submitted partial solution k. We com-
puted accuracy as:

accπ =

∑
k∈T λkδ(k)∑
k∈T λk

δ(k) =

{
1, if π(k) ∈ t(k)
0, otherwise

Four of the baseline policies that we tested (MDP, Static
Analysis, Rivers Policy and Ability Model) had hyper-
parameters. To maximally benefit the baseline methods we
optimize hyper-parameters with respect to accuracy on PA .
This means that for those algorithms, it is possible that their
performance numbers will be artificially higher on PA due to
over-fitting.

RESULTS
The best algorithm for both PA and PB was the Poisson Path
policy which had accuracy of 95.9% and 84.6% respectively
despite making the desirable path assumptions and only using
submission counts. Indeed, the second best performing algo-
rithm also made such assumptions and had almost identical
accuracies. See table 2 for the full results. The structure of
the policies learned by the Desirable Path Algorithms tended
to push students towards a backbone pathway of partial so-
lutions. This pattern is visible in figure 1 which depicts the
Poisson Path PSP for PA. You can see the backbone through
partial solutions [10, 9, 1, 2, 0] that the algorithm favored.

The other algorithms had notably lower scores. Interestingly,
algorithms that were based on transition dynamics, eg MDP
and Most Common Next were less effective even though we
had enough historical data to accurately approximate transi-
tion probabilities. This result seemed related to the obser-
vation that outside the mainstream paths-to-solution students
systematically made transitions which disagreed with expert
suggestions. We observed that for most partial solutions, the
majority of students did not take an action which agreed with
the expert label. In fact for PA, for over 51% of the expert la-
belled partial solutions, the most popular next partial solution
was not one that experts said students should transition to, and
for 34% of labelled partial solutions, the incorrect most pop-
ular next step was over three times as popular as any expert
recommended next step.

L@S 2015 • Design March 14–18, 2015, Vancouver, BC, Canada

200



PA Accuracy PB Accuracy

Algorithm

Random 8.2% 4.3%
Shortest Path 49.5% 33.6%
Min Time 67.2% 42.2%
Rivers Policy† 72.9% 78.2%
Expected Success 77.9% 56.2%
MDP† 80.5% 47.6%
Most Common Next 81.1% 49.0%
Static Analysis† 86.3% -
Most Popular Path 88.3% 52.8%
Ability Model 88.4% 63.3%
Independent Probable Path ‡ 95.5% 83.3%
Poisson Path ‡ 95.9% 84.6%

Variation

Unconditioned on Success 72.2% 68.3%
No Interpolation 86.8% 70.5%
Allow Cycles 94.3% 82.0%
Poisson Interpolation 94.6 % 83.2%

Table 2: Percent submissions with the ground truth edge cor-
rectly predicted. † Algorithms applied to learning PSP’s in
other papers. ‡ Desirable Path Algorithms.

Figure 4: Learning curve for PA (above) and PB (bellow). Stu-
dents are subsampled randomly from dataset. Error bars are
standard error.

While the Rivers Policy performed well on the PB in many
instances in PA it would suggest a student undo something
constructive from their partial solution. The optimal static
analysis algorithm was worse than the best trajectory based
algorithm and it would have been very difficult to design such
a system for PB. There is a lot of nuance that goes into decid-
ing what a student should do. The experts seem to be working
in a formulaic way, but it is very difficult to codify their deci-
sion making.

There are several variations of the Poisson Path that we tested
to understand what preprocessing was most important. The
two steps that were necessary were: (1) interpolate each stu-
dent series over the graph of single legal moves and (2) con-
dition node counts on success (see table 2). Removing cycles
from student partial solution series is less important. We ap-
plied the same pre-processing for all algorithms tested.

We ran an experiment to understand the effect of dataset size
on accuracy. On both PA and PB we subsampled students from
our dataset and reran the entire policy learning process (in-
cluding the interpolation). The policy generated by the sub-
sampled students was evaluated for accuracy on the same
gold standard expert data. We started with a training dataset
size of two students and continually doubled the number of
students. For each size we repeated the experiment 100 times
to estimate accuracy mean and standard deviation. See fig-
ure 2. Even if we were given historical data from substan-
tially fewer students the Poisson Path PSP would have had
comparable accuracy. With a dataset of only two thousand
students accuracy is similar to the results from running the
algorithm on hundreds of thousands of students. While two
thousand students may be sufficient, as more data is collected
the algorithm monotonically improves in accuracy and accu-
racy variance. Since the Poison Path algorithm can be cast as
an instance of Dijkstra’s shortest path the running time will
be reasonable even for courses that are orders of magnitude
larger than the Hour of Code.

Summative Assessment
The same insights that allow us to predict how experts would
suggest students make forward progress can be used to under-
stand how well each student progressed through the assign-
ment. The desirable path theory that inspired both the Poisson
Path and the Independent Probable Path algorithms suggests
a statistic that can be measured per student. Assuming that
path counts of a partial solution are a function of desirability,
we can then calculate the desirability of the path of partial
solutions a student took through as they worked through a
challenge.

Based on the Poisson interpretation of desirability used in the
Poisson Path, we define the “path score” of a student’s se-
ries T to be the time we expect an average successful student
would take to complete the series. Assuming that each state
is generated via a Poisson process, expected time until we
see the series of states that constitute a path is the sum of the
inverse of the rate of each partial solution:

pathScore(T ) =
∑
x∈T

1

λx

L@S 2015 • Design March 14–18, 2015, Vancouver, BC, Canada

201



Figure 5: Student path scores vs probability of completion of subsequent problems. Error bars are standard error.

We calculated the path score for each student and explored
how the scores were related to the probability that the student
would complete the next challenge. For example PA is the
fourth challenge in the Hour of Code. We computed a path
score for each student that completed PA and observed which
of those students went on to solve the fifth challenge (PA +).

From simple visualization it was clear that the negative log of
the path score had a strong linear relationship with probability
of completing the next challenge for students in both PA and
PB. For the population of students who attempted PA , their
probability of completing the next challenge PA+ increased
by 3% with each per unit increase in− log(pathScore). Lin-
ear regression between log(pathScore) and the probability
of completing the next challenge had an R2 of 0.98. Learners
with the worst paths had a 58% chance of completing the next
problem and learners with the best paths had a 95% chance:
an effect size of 37pp. PB similarly had an straight line pattern
(R2 = 0.97) and an effect size of 43pp. See figure 5.

This trend is especially interesting when we only look at the
scores of students who arrived at a solution to the challenge
from which we calculate the path scores. These are the stu-
dents who, if it were a traditional classroom, would have re-
ceived a perfect grade. For PA the successful students with
the worst and the best path scores had a 25.1pp difference in

the probability of completing the subsequent problem. Again
there was a linear relationship between the negative log of the
path score and probability of success (R2 = 0.93). PB also had
a linear relationship (R2 = 0.96), with an effect size that was
9.7pp between the best and the worst path scores. It seems
plausible that many students who may have disengaged from
the curriculum because of a factor related to low path score
may not have stayed in the course until the 18th challenge. In
both problems the Path Score shows predictive signal towards
retention beyond what we could know from simply observing
whether a students solved the challenge.

Generating Hints
In the introduction of this paper we proposed that the chal-
lenge of autonomously providing hints could be decoupled
into (1) Deciding how a learner should make forward progress
and (2) Choosing how to communicate that information to the
student such that they improve on a learning objective. Given
that we can solve the first task sufficiently well, we are pur-
suing research on the second: how to turn our PSP into hints.
This latter task combines education and UI decisions.

Having a PSP for a given challenge substantially simplifies
the task of generating hints. It tells the hint generation algo-
rithm which part of a student’s current partial solution they
should work on, and how they should modify their work. Of-

L@S 2015 • Design March 14–18, 2015, Vancouver, BC, Canada

202



ten, students have multiple issues. A policy allows an au-
tomated system to know what is the first issue the student
should work on. Moreover, knowing the exact edit we be-
lieve an expert would like a student to make means that gen-
erating a hint is reduced to deciding how directly we should
tell the student what to do. Based off of a simple template we
turned π(x) into English text hints. We are currently running
an A/B study with thousands of students where they either
receive hints generated autonomously from the policy, hints
hand-crafted by humans, or placebo hints.

DISCUSSION
One of the more surprising results of this research is that even
with hundreds of thousands of students, it turns out that many
reasonable statistics on learner trajectories are not particularly
useful for predicting what experts say is the correct way for-
ward. Most interestingly, the transitions that learners take af-
ter encountering a problem do not tend to correspond with
what experts think learners should do. The wisdom of the
crowd of learners, as seen from this angle, is not especially
wise. This result raises the question: What is so good about
the Poisson Path? Why does it, and the Independent Proba-
ble Path work when other methods do not? In designing both
of the Desirable Path Algorithms, we followed our intuition
that a useful algorithm would be able to predict what an av-
erage successful student would do if we were to place her in
a partial solution. We first assumed that partial solution sub-
mission counts are uniquely important as they are a statistic
which reflects how desirable a partial solution is to the aver-
age student (or rather the inverse is a measure of how rela-
tively undesirable). Many baseline algorithms instead relied
on transition counts, but that number captures what the biased
population of students who had arrived at a given partial so-
lution, not the average student, would do. Previous research
suggests that transition-based algorithms are limited by lack
of data. We now believe that their shortcomings are instead
a result of reliance on subpopulations with systematic pre-
dispositions. When designing the Desirable Path Algorithms
we also assumed that when deciding on a next step it is best
to search for an entire path to solution. Many baseline al-
gorithms only consider neighboring partial solutions and do
not see the bigger picture. We propose that the success of
the Desirable Path Algorithms is evidence that both assump-
tions are important, operable properties of historical student
trajectories.

Code.org is a compelling case study as tens of millions of stu-
dents are expected to use the website next year. However, it
is only one course and as such is not a proof of our ability to
provide feedback for general richly-structured assignments.
Even for the Hour of Code where the problems are simple
and there are huge numbers of students, the solution space
is almost too disperse for statistical methods. Though there
may be millions of students, outside the most common par-
tial solutions there is a sharp drop-off in both the density of
students per partial solution, and the proportion of students
who took reasonable next steps. For more complicated pro-
gramming tasks, or written language tasks, there would be
too few students that would submit the same partial solutions

[7]; feedback based on historical patterns over raw partial so-
lutions has its limits. One way in which we could further
extend the boundary of assignments for which we could pro-
vide at scale feedback using the Desirable Path Algorithms
would be to develop a better representation for partial solu-
tions and/or a more intelligent way to find patterns in submis-
sions. In general the AI challenges in education are hard and
the field can make faster progress if we decouple the evalua-
tion of machine learning tasks so that we can make progress
without continuously paying the heavy cost of user studies.

A limitation of our approach is that it is not clear that students
need hints and it is not clear that pushing a student towards the
answer is the right objective [16]. A lot of learning happens
when we struggle and go off on tangents. In the Code.org
context, hints that push students towards the solution are use-
ful because the goal of the Hour of Code is primarily motiva-
tion. The course intends to provide learners with an exposure
to programming. Being able to give a stuck student a hint
is useful for fostering retention and interest in the subject.
One way to approach the uncertainty of knowing whether a
hint would be useful for a student is through a reinforcement-
agent hint-giving system. Such a system would be integrated
into the website and would dynamically decide whether to
give a hint (and if so, which hint). There are well studied
ways to balance the need to explore the impacts of giving dif-
ferent hints to learners at different times, and to exploit what
is known to work.

Beyond the capacity to generate hints, the process of finding
signals in historical data has interesting side-products. The
most important corollary we presented is that the same intu-
ition that guides generating PSPs can help us understand in-
dividual learners and predict retention. Piech et al found pro-
totypical clusters of ways in which students solve problems
that were predictive of exam scores [11]. This paper goes be-
yond that result by calculating a continuous valued path score
which can make more fine grained predictions. Our ability to
predict both retention and teacher suggestions are results that
lend credibility to one another. The Path Score metric has
obvious utility as a diagnostic measure that could help iden-
tify learners that may need more attention. Of course, know-
ing that a student has a bad path score does not imply why
the student has a low probability of completing a subsequent
challenge. It is only a correlation. It is not clean why Path
Scores and probability of retention are exponentially related.
One interpretation is that there is a monotonic ability scale
and that each unit decrease in ability has compounding, and
therefore exponential, impact on how well a student navigates
through partial solutions.

There are more undiscovered patterns in how students nav-
igate richly-structured assessments. Student trajectories re-
main a great mystery.

Conclusion
In this paper we explored ways to solve the machine learn-
ing question: how can we predict the way a teacher would
encourage a student to make forward progress? The ability
to make such prediction is useful for generating feedback at

L@S 2015 • Design March 14–18, 2015, Vancouver, BC, Canada

203



scale. We show that in the Code.org case study two algo-
rithms with the same theoretical backing are accurate at recre-
ating expert opinion. These algorithms can be applied to logs
of learners working on problems for which there are no expert
labels, and will produce an intelligent strategy for what learn-
ers ought to do. We then claim that the same theory can be
used to calculate a statistic on how well a student navigated
the assignment and show that this statistic predicts future re-
tention. The way in which students solve problems is fertile
ground for research in learning at scale. Instead of looking
solely at a student’s final answer, education of the future will
take note of the journey the learner took to get there.

ACKNOWLEDGMENTS
We thank Code.org. Especially Ellen Speritus and Nan Li.
We would also like to thank Steve Cooper, John Mitchell,
Peter Norvig and Andy Nguyen for helpful advice. Chris is
supported by NSF-GRFP grant number DGE-114747.

REFERENCES
1. Ahmadzadeh, M., Elliman, D., and Higgins, C. An

analysis of patterns of debugging among novice
computer science students. In ACM SIGCSE Bulletin,
vol. 37, ACM (2005), 84–88.

2. Aleven, V. A., and Koedinger, K. R. An effective
metacognitive strategy: Learning by doing and
explaining with a computer-based cognitive tutor.
Cognitive science 26, 2 (2002), 147–179.

3. Barnes, T., and Stamper, J. Toward automatic hint
generation for logic proof tutoring using historical
student data. In Intelligent Tutoring Systems, Springer
(2008), 373–382.

4. Cheang, B., Kurnia, A., Lim, A., and Oon, W.-C. On
automated grading of programming assignments in an
academic institution. Computers & Education 41, 2
(2003), 121–131.

5. Fitzgerald, S., Lewandowski, G., McCauley, R.,
Murphy, L., Simon, B., Thomas, L., and Zander, C.
Debugging: finding, fixing and flailing, a
multi-institutional study of novice debuggers. Computer
Science Education 18, 2 (2008), 93–116.

6. Fleiss, J. L., Levin, B., and Paik, M. C. The
measurement of interrater agreement. Statistical
methods for rates and proportions 2 (1981), 212–236.

7. Huang, J., Piech, C., Nguyen, A., and Guibas, L.
Syntactic and functional variability of a million code
submissions in a machine learning mooc. In AIED 2013
Workshops Proceedings Volume, Citeseer (2013), 25.

8. Kulkarni, C., Wei, K. P., Le, H., Chia, D., Papadopoulos,
K., Cheng, J., Koller, D., and Klemmer, S. R. Peer and
self assessment in massive online classes. ACM
Transactions on Computer-Human Interaction (TOCHI)
20, 6 (2013), 33.

9. Nguyen, A., Piech, C., Huang, J., and Guibas, L.
Codewebs: scalable homework search for massive open
online programming courses. In Proceedings of the 23rd

international conference on World wide web,
International World Wide Web Conferences Steering
Committee (2014), 491–502.

10. Pappano, L. The year of the mooc. The New York Times
2, 12 (2012), 2012.

11. Piech, C., Sahami, M., Koller, D., Cooper, S., and
Blikstein, P. Modeling how students learn to program. In
Proceedings of the 43rd ACM technical symposium on
Computer Science Education, ACM (2012), 153–160.

12. Puterman, M. L. Markov decision processes: discrete
stochastic dynamic programming, vol. 414. John Wiley
& Sons, 2009.

13. Ritter, S., Anderson, J. R., Koedinger, K. R., and
Corbett, A. Cognitive tutor: Applied research in
mathematics education. Psychonomic bulletin & review
14, 2 (2007), 249–255.

14. Rivers, K., and Koedinger, K. R. A canonicalizing
model for building programming tutors. In Intelligent
Tutoring Systems, Springer (2012), 591–593.

15. Rivers, K., and Koedinger, K. R. Automating hint
generation with solution space path construction. In
Intelligent Tutoring Systems, Springer (2014), 329–339.

16. Roll, I., Baker, R. S., Aleven, V., and Koedinger, K. R.
On the benefits of seeking (and avoiding) help in online
problem-solving environments. Journal of the Learning
Sciences, just-accepted (2014).

17. Shapley, L. S. Stochastic games. Proceedings of the
National Academy of Sciences of the United States of
America 39, 10 (1953), 1095.

18. Singh, R., Gulwani, S., and Solar-Lezama, A.
Automated feedback generation for introductory
programming assignments. In ACM SIGPLAN Notices,
vol. 48, ACM (2013), 15–26.

19. Szczerba, R. J., Galkowski, P., Glicktein, I., and
Ternullo, N. Robust algorithm for real-time route
planning. Aerospace and Electronic Systems, IEEE
Transactions on 36, 3 (2000), 869–878.

20. Watson, C., Li, F. W., and Godwin, J. L. Bluefix: Using
crowd-sourced feedback to support programming
students in error diagnosis and repair. In Advances in
Web-Based Learning-ICWL 2012. Springer, 2012,
228–239.

21. Weld, D. S., Adar, E., Chilton, L., Hoffmann, R.,
Horvitz, E., Koch, M., Landay, J., Lin, C. H., and
Mausam, M. Personalized online educationa
crowdsourcing challenge. In Workshops at the
Twenty-Sixth AAAI Conference on Artificial Intelligence
(2012).

22. Whitehill, J., Wu, T.-f., Bergsma, J., Movellan, J. R., and
Ruvolo, P. L. Whose vote should count more: Optimal
integration of labels from labelers of unknown expertise.
In Advances in neural information processing systems
(2009), 2035–2043.

L@S 2015 • Design March 14–18, 2015, Vancouver, BC, Canada

204


	Introduction
	Related Work

	Data
	Methods
	Desirable Path Algorithms
	Poisson Path
	Independent Probable Path

	Baseline Algorithms
	Markov Decision Problem
	Rivers Policy
	Static Analysis
	Most Likely Next
	Most Common Path
	Expected Success
	Min Time
	Ability Model

	Evaluation

	Results
	Summative Assessment
	Generating Hints

	Discussion
	Conclusion

	Acknowledgments
	REFERENCES 



